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Lattice—Boltzmann models, proposed at the end of the 1980s as the noise-free ver-
sion of lattice—gas models, are based on gas-kinetic representation of fluid flow. Their
recent modifications, the lattice BGK models, provide especially simple, effective
and stable algorithms for the solution of hydrodynamical problems. A local second-
order grid refinement scheme for the lattice—-BGK model is proposed in this work.
The refinement scheme and a boundary-fitting scheme for complicated geometries
are applied to simulate a benchmark problem of flow past a cylinder in a channel
with small and moderate Reynolds numberg.1998 Academic Press
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1. INTRODUCTION

The lattice—Boltzmann method [1, 2] and its recent modification, the lattice—BGK (LBC
method [3—6] provide an alternative method for solving continuum problems on a kir
basis. The computational method is based on the development of discrete molecul
locity distribution functions on uniform Cartesian lattices with additional diagonal linl
Hydrodynamic variables are computed at the nodes as moments of the discrete distril
function. The resulting algorithm has been shown to be simple and efficient for computa
of incompressible, viscous flows over complex boundaries.

An essential advantage of the LBGK method is the ease and accuracy in dealing
complicated boundary geometries. In the range of small to modé@ate?)) Reynolds
numbers, where the flow solution is not too anisotropic, the lattice-BGK method is ¢
petitive or even superior to conventional CFD methods if dealing with flows in comp
geometries as in filters [7] or through granular material.

At higher Reynolds numbers the solution becomes strongly anisotropic due to the
ence of very thin boundary layers. Then the application of the lattice-BGK method I
to resolution problems for such layers. However, the difficulties are essentially relate
the use of Cartesian-like grids, rather than to the lattice—BGK concept.

One way to reduce the difficulties at high Reynolds numbers is the use of body-conf
curvilinear meshes with clustering of grid points in critical zones, a convenient way L
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in conventional CFD methods. A promising approach for extending the LBGK meth
to curvilinear grids was published recently by He and Doolen [8, 9], based on the

terpolation strategy proposed in [10]. Using an additional finer Cartesian-like lattice a
corresponding interpolation strategy they were able to compute results at higher Reyn
numbers. This concept is based on the fixed time-step defined by underlying fine LB
lattice.

A different way to deal with locally anisotropic solutions is the concept of hierarchic
grid refinement which we follow in this paper. This concept is widely used in conventior
CFD methods, e.g. in the method of adaptive mesh refinement (AMR) proposed by Be
and Colella [11] and Quirk [12] and applied by the authors, e.g. in [13]. The calculation
based on a coarse grid covering the whole integration domain. In a critical region, dete
either by adaptation criteria or definedpriori, a finer grid is superposed to the basic,
coarser grid. The calculation proceeds with large time steps accordingly to the coarse
while on the finer grids several time-steps are performed to advance to the same 1
level.

The aim of the present study is to adopt this hierarchical refinement concept to
LBGK method. In contrast to conventional methods the employment of locally refin
patches requires more care since the lattice represents the phase space, i.e. the mol
velocity and the local coordinates.

2. BASIC ALGORITHM

The lattice—BGK model is described by the rate of change of a discrete velocity dis
bution function [5, 6]:

foi(t+ 6. 1+ Cpidy) = fpit, 1) + o flt, 1) — ft, 0] 1)
The equilibrium distribution function is a discrete analog of the Maxwellian distributio

function [5, 6]. For the simulation of incompressible flows with dengity= 1 one can take
it in the form [14, 15],

p uacpia uauﬂ Cpiacpiﬂ
fol=ty| = + + : —8ap ) | 2
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wherecs =c/+/3, c=8,/8;, and$y is the lattice spacing. The Knudsen number of the
systeme is defined as the ratio between lattice spadingnd characteristic length of the
system. Using Chapman—-Enskog and Taylor expansions in a series of Knudsen numt
can be proved [7, 14, 15] that the zero and first moments of lattice—BGK equation Eq.
provide the incompressible Navier—Stokes equations with second-order accuracy in s
if the Mach number of the flow is in the order of the Knudsen nunatserd less. The usual
boundary conditions on rigid surfaces used in lattice-gas models as, for example, bounc
back conditions or “equilibrium-state” conditions [16] decrease, however, the accuracy
the solution near curved surfaces to first order [17]. Even improved boundary conditic
proposed in [18, 19] did not consider the location of an arbitrary curved boundary betw
the nodes of the lattice and in applications to arbitrary geometries actually remained at
order lower than the order of the scheme itself.
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FIG. 1. Computational mesh and geometrical relations for fitting of solid boundaries.

Boundary-fitting conditions proposed earlier by the authors in [7] for steady-state flc
enable second-order accuracy at boundaries of arbitrary shape in consistency with the
scheme.

3. BOUNDARY-FITTING CONCEPT

A curved boundary lying between the nodes of the uniform lattice of a $&z&ketched in
Fig. 1. If the values of velocity on the boundar§are known(u? = 0 for no-slip conditions,
u9 £ 0 for the boundary of porous body) then the distribution function coming to the “flui
noder ¢ from the “rigid” onery, is prescribed to be

foi(t+6.11) = [(L— o) fpit, 1) + of 5t 1] (1 — )

ICpia
+ a]_(l)| fp| (t rb) + aza)l p|q(t rf) - 2tp C2p| ’ (3)
wherew is the relaxation parameter in the “fluid” nodeg;, = —Cpi, & - a =0, andaf +
aZ = 1. The “equilibrium distribution function” in the “rigid” nodes;(t, rp,) is defined as

fsiq(t’ fo) = tp< p(t,r) N Uq (t, I'b)Cpig n Ue (L, re)upg(t,re) (Cpiacpiﬂ —5aﬁ>), @

2 2 2 2
cZ cs 2cz cs

wherew; is the adjusting parametaer(t, ry) is the linear extrapolated value offrom the
noder ¢ through the known value on the boundary:

g

A-1 u
u(tv rb) = u(ta rf) + Z

The projection of velocitydcy, is taken in the crossing point of the boundary and link
Taking into account tha&? p~ O(M?) and considering flows with characteristical time:
~(Me)~L, one can estimate the first term in Chapman—Enskog expansion as

1afeq(t r)

f(t.r) =
trn= %

t, ou
Cpia + O(M?) = —w—;ﬁcpiacpm +0OM?).  (5)
S
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Then one can obtain from Egs. (3)—(5)

fpil(t + 6, r¢)

Yt,re)+ef P, re) + O(Me?)

p'l pis
Uy (t, 1 f)Cpla

S

+ef Pt r1) + O(Me?)

fsiq(t, re) —2tp
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Taylor expansion in a series of Knudsen numberovides
u(t, r) —u% = —d,u(t, r ) AeCpiy + O(Me?).

Equating the coefficient of the first-order term in Eq. (6) to zero, one can obtain the re
tionship betweem; andA,

Wi =a)(2A—l), a=1 a=0;

(A — 1)

—, a4=0 a=1,
(1_w) 1 2

wj = w

wherew is the relaxation parameter in the “fluid” nodes. The remaining terms in Eq. (6) &
in the order ofMe2, M?¢ and for flows withM ~ ¢ can be included in the first-order term
in the Taylor expansion of velocity in the “fluid” noade which now can be written as

uct,r¢) —ud=—,u(t, ri)(A +ae)ecpiy, a= O(1).

This means that the position of the boundary in the space is defined with aceurathat

is one order higher than in the case of bouncing-back or “equilibrium state” conditions.
The boundary-fitting conditions (Eqg. (3)) are introduced into the usual lattice—Boltzma

“stream-and-collide” procedure. They provide the solution of incompressible flow wi

second-order accuracy for flows with characteristical tim&de)~1 (this accuracy is

consistentto the exterior LBGK scheme). For reasons of stability the following combinati

of boundary-fitting conditions has to be used in Eq. (3):

wi=wRA-1), a=1 a=0 A >05,

2A —1
wi=a)¥, =0 a=1 A <05
(1-w)
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4. LOCAL GRID REFINEMENT

Local grid refinement is applied to regions where large changes of solution are expe
The use of locally refined patches superposed to the global coarse grid saves, in
eral, memory and computational time and enables a high resolution where needed.
refinement is performed by dividing the space step through a refinementriadtoe kine-
matic viscosity, defined in the frame of the LBGK model, depends on the step size \
v=(2/w — 1)8xC/6. To achieve the same viscosity and, thus, the same Reynolds nun
on coarse gridssS) and fine gridgs, = §S/n), the relaxation parameterin Eq. (1) has
to be redefined [20] by

2

T 14nQlwc—1) "

oF

Herews andw. are the relaxation parameters on the fine and coarse grids, respecti
Remaining in the over relaxation regi@a; > 1) and taking into account that when is
too close to 2 the LBGK scheme becomes unstable, one can estimate from Eq. (7) the
limit of the parameter of refinement It depends on the specific problem; usually the uppt
limit of n is about 50.

The time-step on the fine grid is correspondingly reduceﬁtfby 8¢/n, wheresy is the
time-step on the coarse grid. The second term in the Chapman—Enskog expansion,

foi = for+efld +e2fP 4. (8)

for the lattice—-BGK model, Eq. (1), depends on the relaxation parameter

1 1/af5  af
f[(li):_; a—fl—i‘a—XF:Cpia . (9)

Sincew changes with the grid size and because the hydrodynamical variables and

derivatives have to be continuous over the interface between two grids, one can obtain
Egs. (1), (2), (7), (8), and (9) the following relationships between postcollision distribut
functions out-coming from the nodes of the coarse and fine grids, respectively:

(1 - wc)win

postcoarse__ ¢ eqfine postfine eqgfine

foi =t + (f —fo) ocl—wp) (10)
postfine __ ¢feqcoarse Fpostcoarse  ¢£eqcoars wc(1— wt)

fpostine — £ +(fh R i 3.m. (11)

Here the value:fpi define the spatially and temporally interpolated values of the distributi
function from the coarse grid.

The numerical realization is the following. The whole computational domain is cove
with the coarse grid. Patches of fine grids are defined in certain regions, e.g. around a
body. Values of the distribution functions on the coarse grid which are coming from regi
of finer patches, including high gradients of hydrodynamical variables, are calculate
the nodes common to both grids, according to Eq. (10). At the timé& + ¢ after one
“streaming-collision” step on the coarse grid the new valuesgﬁftcoars?t, r) are known
on the boundary of the patch. With second-order interpolation in space and time one
calculate the values df")’f’s“'”e, according to Eq. (11) in the boundary nodes of the fine gr
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atthe timey, to + (Stf R Stf(n —1). The calculation proceeds'streaming-collision”
steps on the fine grid.

The parallelization performs well as on uniform grids. For load balance one has to t:
care for the different regions of refinement and the corresponding different time-steps.

5. TEST CALCULATIONS

Test calculations are performed for 2D benchmark problems of incompressible flo
defined in [21] and validated by many computations and partially by experiments. Th
problems concern steady and unsteady flows around a circular cylinder placed nonsym
rically in a long rectangular channel. Two typical problems are selected from this ben
mark, a steady-state problem atR&0 and an unsteady problem atR&00, resulting in a
periodical vortex street. The present computations are performed on a coarse grid (2:
43 nodes) with a patch of refinemamntiround the body. The maximum veloclty at the
entrance in units of molecular speed equal to 0L (U/c~¢€).

Results for the steady case atR&0 with refinement facton =4 (w. =5/3) are pre-
sented in Table | for some variations of the scheme. The table shows the coefficients
drag and lift, the pressure difference between the front and end points of the cylinc
and the recirculation length. The first row represents results with the present second-c
connection on the interfaces between two grids but with first-order boundary conditic
(bouncing-back) on the body surface. The second and third rows represent results
boundary-fitting conditions on the body surface but with first-order connection on the
terfaces between the two grids either by using equilibrium distribution functions (secc
row) or by exchanging distribution functions without rescaling (third row). The fourth ro\
represents results with the second-order accuracy in the whole computational domain
means boundary-fitting conditions and rescaling of the distribution functions on the g
interfaces according to Eq. (10) and Eq. (11). These results agree well in the span-widt
reference values [21] shown in the fifth and sixth rows. The pressure field obtained on
coarse and fine grids and the streamlines around the cylinder are shown on Fig. 2 for
case. The isobars cross without disturbances the interfaces between two grids.

Computations at Re 100 with the refinement factor@. = 1.923) in the same geometry
and stationary inflow resultin a periodical vortex street. The periodical solution was initia
by computations of first-order accuracy to accelerate the onset of periodical flow. The pz
around the body is refined with a factorro& 6.

TABLE |
Steady Flow Around a Cylinder at Re =20

Co C, Ap La
LBGK, 1st-order, 5.34 0.011 0.119 0.08
LBGK, 1st-order 5.28 0.014 0.111 0.08
LBGK, 1st-order 4,97 0.013 0.104 0.09
LBGK, 2nd-order 5.52 0.011 0.116 0.08
Band width of 5.57 0.010 0.117 0.08
Ref. values [21] 5.59 0.011 0.118 0.09

Note Coefficients of dra@p and lift C,, pressure differencap
between the front and end points of cylinder, recirculation lehgth
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FIG. 2. Steady flow around a cylinder at Re20. Presentation of coarse mesh, isobars, and streamlines.

Results of the developed periodical flow are shown in Figs. 3a to 3c for instantane
isolines ofx-velocity in Fig. 3a, for isolines of/-velocity in Fig. 3b, and for isobars in
Fig. 3c. Solid lines in Fig. 4 represent drag and lift coefficients and the pressure differe
between the front and end points of the cylinder versus the number of coarse time-ste
the second-order accurate boundary-fitting conditions are used. Dashed lines corresp
the same values if the bouncing-back boundary conditions on the surface of the cylinde
used. The dotted straight lines are the upper and lower limits of the amplitudes accor
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FIG. 3. Unsteady flow around a cylinder at Re100: a. instantaneous isolinesefelocity; b. instantaneous
isolines ofy-velocity; c. instantaneous isobars.



226 FILIPPOVA AND HANEL

il

1 el — N
1.8800E4 1.9000E4 1.9200E4 1.9400E4 1.9600E4 1.9800E4 2.0000E4

FIG. 4. Unsteady flow around a cylinder at Rel00. Coefficients of dra@€p and lift C, and pressure
difference Ap between the front and end points of cylinder versus the number of time-tepslid lines —
boundary-fitting conditions; dashed lines — bouncing-back conditions; straight dotted lines — bounds of refer
vaIuesCD maxs CL maxs Ap(to + T/2) [21]

to the reference values in [21]. They correspond to the maximum drag coefficient,
maximum lift coefficient, and the pressure difference on the cylinder after half-p&yiad
from the time corresponding to the flow state with the maximum lift coeffidiesatty). The
corresponding time is marked with the hollow circles on the curvpé /§¢) represented
in enlarged form in Fig. 5.

The computed Strouhal numbers of 0.297 for the case of bouncing-back and 0.298 fol
case of boundary-fitting conditions fit well in the bandwidth 0.295-0.305 of reference valt
[21]. Like the steady state results, the results obtained with second-order boundary-fit
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FIG.5. Unsteady flow around a cylinder at ReL00. Drag coefficient, and pressure differencep between
the front and end points of cylinder versus the number of time-${ep®lid lines — boundary-fitting conditions;
dashed lines — bouncing-back conditions; straight dotted lines — bounds of referencélglueap(to + T/2)
[21]. (Enlarged upper part of Fig. 4.)
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conditions for unsteady problems agree well with the reference values [21]. Notice tha
results obtained with bouncing-back boundary conditions are also in good agreement
the reference values [21]. It is connected with the fact that in calculations of lift and d
coefficients hydrodynamical variables as pressure and velocity gradients on the surfa
cylinder were calculated by extrapolation of the corresponding values from the flow al
the external normal of the cylinder, and the influence of disturbances on the curvilir
surfaces in viscous flow is “smoothed” some distance from it.

The CPU time per cycle on a PA-7200 workstation is 1140 s. It is comparable to the
CPU times of conventional incompressible Navier—Stokes solvers published in [21]; ¢
some multigrid solvers perform faster.

5. CONCLUSIONS

Consequent formulation of the lattice—-BGK method to second-order accuracy re:
in a reliable, accurate, and efficient algorithm for the simulation of incompressible flc
at low to moderate Reynolds numbers around complex geometries. Local grid refinel
derived from detailed considerations of the model enables economical use of comy
capacities and increases the flexibility to deal with anisotropic flow features and thu
deal with higher Reynolds numbers on Cartesian-like lattices. The combination witt
adaptive procedure offers a prospective way to an adaptive mesh refinement conce
lattice—BGK methods.
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