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Lattice–Boltzmann models, proposed at the end of the 1980s as the noise-free ver-
sion of lattice–gas models, are based on gas-kinetic representation of fluid flow. Their
recent modifications, the lattice BGK models, provide especially simple, effective
and stable algorithms for the solution of hydrodynamical problems. A local second-
order grid refinement scheme for the lattice–BGK model is proposed in this work.
The refinement scheme and a boundary-fitting scheme for complicated geometries
are applied to simulate a benchmark problem of flow past a cylinder in a channel
with small and moderate Reynolds numbers.c© 1998 Academic Press
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1. INTRODUCTION

The lattice–Boltzmann method [1, 2] and its recent modification, the lattice–BGK (LBGK)
method [3–6] provide an alternative method for solving continuum problems on a kinetic
basis. The computational method is based on the development of discrete molecular ve-
locity distribution functions on uniform Cartesian lattices with additional diagonal links.
Hydrodynamic variables are computed at the nodes as moments of the discrete distribution
function. The resulting algorithm has been shown to be simple and efficient for computations
of incompressible, viscous flows over complex boundaries.

An essential advantage of the LBGK method is the ease and accuracy in dealing with
complicated boundary geometries. In the range of small to moderate(O(102)) Reynolds
numbers, where the flow solution is not too anisotropic, the lattice–BGK method is com-
petitive or even superior to conventional CFD methods if dealing with flows in complex
geometries as in filters [7] or through granular material.

At higher Reynolds numbers the solution becomes strongly anisotropic due to the pres-
ence of very thin boundary layers. Then the application of the lattice–BGK method leads
to resolution problems for such layers. However, the difficulties are essentially related to
the use of Cartesian-like grids, rather than to the lattice–BGK concept.

One way to reduce the difficulties at high Reynolds numbers is the use of body-conform,
curvilinear meshes with clustering of grid points in critical zones, a convenient way used
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in conventional CFD methods. A promising approach for extending the LBGK method
to curvilinear grids was published recently by He and Doolen [8, 9], based on the in-
terpolation strategy proposed in [10]. Using an additional finer Cartesian-like lattice and
corresponding interpolation strategy they were able to compute results at higher Reynolds
numbers. This concept is based on the fixed time-step defined by underlying fine LBGK
lattice.

A different way to deal with locally anisotropic solutions is the concept of hierarchical
grid refinement which we follow in this paper. This concept is widely used in conventional
CFD methods, e.g. in the method of adaptive mesh refinement (AMR) proposed by Berger
and Colella [11] and Quirk [12] and applied by the authors, e.g. in [13]. The calculation is
based on a coarse grid covering the whole integration domain. In a critical region, detected
either by adaptation criteria or defineda priori, a finer grid is superposed to the basic,
coarser grid. The calculation proceeds with large time steps accordingly to the coarse grid
while on the finer grids several time-steps are performed to advance to the same time
level.

The aim of the present study is to adopt this hierarchical refinement concept to the
LBGK method. In contrast to conventional methods the employment of locally refined
patches requires more care since the lattice represents the phase space, i.e. the molecular
velocity and the local coordinates.

2. BASIC ALGORITHM

The lattice–BGK model is described by the rate of change of a discrete velocity distri-
bution function [5, 6]:

f pi (t + δt , r + cpiδt ) = f pi (t, r) + ω
[

f eq
pi (t, r) − f pi (t, r)

]
. (1)

The equilibrium distribution function is a discrete analog of the Maxwellian distribution
function [5, 6]. For the simulation of incompressible flows with densityρ0 = 1 one can take
it in the form [14, 15],

f eq
pi = tp

[
p

c2
s

+ uαcpiα
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s

+ uαuβ

2c2
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·
(

cpiαcpiβ
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− δαβ

)]
, (2)

wherecs = c/
√

3, c= δx/δt , and δx is the lattice spacing. The Knudsen number of the
systemε is defined as the ratio between lattice spacingδx and characteristic length of the
system. Using Chapman–Enskog and Taylor expansions in a series of Knudsen number it
can be proved [7, 14, 15] that the zero and first moments of lattice–BGK equation Eq. (1)
provide the incompressible Navier–Stokes equations with second-order accuracy in space
if the Mach number of the flow is in the order of the Knudsen numberε and less. The usual
boundary conditions on rigid surfaces used in lattice-gas models as, for example, bouncing-
back conditions or “equilibrium-state” conditions [16] decrease, however, the accuracy of
the solution near curved surfaces to first order [17]. Even improved boundary conditions
proposed in [18, 19] did not consider the location of an arbitrary curved boundary between
the nodes of the lattice and in applications to arbitrary geometries actually remained at the
order lower than the order of the scheme itself.
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FIG. 1. Computational mesh and geometrical relations for fitting of solid boundaries.

Boundary-fitting conditions proposed earlier by the authors in [7] for steady-state flows
enable second-order accuracy at boundaries of arbitrary shape in consistency with the inner
scheme.

3. BOUNDARY-FITTING CONCEPT

A curved boundary lying between the nodes of the uniform lattice of a sizeε is sketched in
Fig. 1. If the values of velocity on the boundaryug are known(ug ≡ 0 for no-slip conditions,
ug 6= 0 for the boundary of porous body) then the distribution function coming to the “fluid”
noder f from the “rigid” onerb is prescribed to be

f pi1(t + δt , r f ) = [
(1 − ω) f pi (t, r f ) + ω f eq

pi (t, r f )
]
(1 − ωi )

+ a1ωi f eq
pi (t, rb) + a2ωi f eq

pi (t, r f ) − 2tp
ug

αcpiα

c2
s

, (3)

whereω is the relaxation parameter in the “fluid” nodes,cpi1 = −cpi , a1 · a2 = 0, anda2
1 +

a2
2 = 1. The “equilibrium distribution function” in the “rigid” nodesf eq

pi (t, rb) is defined as

f eq
pi (t, rb) = tp

(
p(t, r f )

c2
s

+ uα(t, rb)cpiα

c2
s

+ uα(t, r f )uβ(t, r f )

2c2
s

(
cpiαcpiβ
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))
, (4)

whereωi is the adjusting parameter,u(t, rb) is the linear extrapolated value ofu from the
noder f through the known value on the boundary:

u(t, rb) = 1 − 1

1
u(t, r f ) + ug

1
.

The projection of velocityug
αcpiα is taken in the crossing point of the boundary and linki .

Taking into account that∇ p∼ O(M2) and considering flows with characteristical times
∼(Mε)−1, one can estimate the first term in Chapman–Enskog expansion as

f (1)
pi (t, r) = − 1

ω

∂ f eq
pi (t, r)

∂xα

cpiα + O(M2) = − tp

ωc2
s

∂uβ

∂xα

cpiαcpiβ + O(M2). (5)
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Then one can obtain from Eqs. (3)–(5)
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Taylor expansion in a series of Knudsen numberε provides

u(t, r f ) − ug = −∂αu(t, r f )1εcpiα + O(Mε2).

Equating the coefficient of the first-order term in Eq. (6) to zero, one can obtain the rela-
tionship betweenωi and1,

ωi = ω(21 − 1), a1 = 1, a2 = 0;

ωi = ω
(21 − 1)

(1 − ω)
, a1 = 0, a2 = 1,

whereω is the relaxation parameter in the “fluid” nodes. The remaining terms in Eq. (6) are
in the order ofMε2, M2ε and for flows withM ∼ ε can be included in the first-order term
in the Taylor expansion of velocity in the “fluid” noder f which now can be written as

u(t, r f ) − ug = −∂αu(t, r f )(1 + aε)εcpiα, a = O(1).

This means that the position of the boundary in the space is defined with accuracy∼ε2 that
is one order higher than in the case of bouncing-back or “equilibrium state” conditions.

The boundary-fitting conditions (Eq. (3)) are introduced into the usual lattice–Boltzmann
“stream-and-collide” procedure. They provide the solution of incompressible flow with
second-order accuracy for flows with characteristical times∼(Mε)−1 (this accuracy is
consistent to the exterior LBGK scheme). For reasons of stability the following combination
of boundary-fitting conditions has to be used in Eq. (3):

ωi = ω(21 − 1), a1 = 1, a2 = 0, 1 ≥ 0.5,

ωi = ω
(21 − 1)

(1 − ω)
, a1 = 0, a2 = 1, 1 < 0.5.
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4. LOCAL GRID REFINEMENT

Local grid refinement is applied to regions where large changes of solution are expected.
The use of locally refined patches superposed to the global coarse grid saves, in gen-
eral, memory and computational time and enables a high resolution where needed. Grid
refinement is performed by dividing the space step through a refinement factorn. The kine-
matic viscosity, defined in the frame of the LBGK model, depends on the step size with
ν = (2/ω − 1)δxc/6. To achieve the same viscosity and, thus, the same Reynolds number
on coarse grids(δc

x) and fine grids(δ f
x = δc

x/n), the relaxation parameterω in Eq. (1) has
to be redefined [20] by

ω f = 2

1 + n(2/ωc − 1)
. (7)

Hereω f andωc are the relaxation parameters on the fine and coarse grids, respectively.
Remaining in the over relaxation region(ω f > 1) and taking into account that whenωc is
too close to 2 the LBGK scheme becomes unstable, one can estimate from Eq. (7) the upper
limit of the parameter of refinementn. It depends on the specific problem; usually the upper
limit of n is about 50.

The time-step on the fine grid is correspondingly reduced byδ
f
t = δc

t /n, whereδc
t is the

time-step on the coarse grid. The second term in the Chapman–Enskog expansion,

f pi = f eq
pi + ε f (1)

pi + ε2 f (2)
pi + · · · (8)

for the lattice–BGK model, Eq. (1), depends on the relaxation parameterω:

f (1)
pi = − 1

ω

(
∂ f eq

pi

∂t
+ ∂ f eq

pi

∂xα

cpiα

)
. (9)

Sinceω changes with the grid size and because the hydrodynamical variables and their
derivatives have to be continuous over the interface between two grids, one can obtain from
Eqs. (1), (2), (7), (8), and (9) the following relationships between postcollision distribution
functions out-coming from the nodes of the coarse and fine grids, respectively:

f post,coarse
pi = f eq,fine

pi + ( f post,fine
pi − f eq,fine

pi

) · (1 − ωc)ω f n

ωc(1 − ω f )
(10)

f post,fine
pi = f̃ eq,coarse

pi + ( f̃ post,coarse
pi − f̃ eq,coarse

pi

) · ωc(1 − ω f )

(1 − ωc)ω f n
. (11)

Here the values̃fpi define the spatially and temporally interpolated values of the distribution
function from the coarse grid.

The numerical realization is the following. The whole computational domain is covered
with the coarse grid. Patches of fine grids are defined in certain regions, e.g. around a solid
body. Values of the distribution functions on the coarse grid which are coming from regions
of finer patches, including high gradients of hydrodynamical variables, are calculated in
the nodes common to both grids, according to Eq. (10). At the timet = t0 + δc

t after one
“streaming-collision” step on the coarse grid the new values off post,coarse

pi (t, r) are known
on the boundary of the patch. With second-order interpolation in space and time one can
calculate the values off post,fine

pi , according to Eq. (11) in the boundary nodes of the fine grid
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at the timet0, t0 + δ
f
t , . . . , t0 +δ

f
t (n−1). The calculation proceedsn “streaming-collision”

steps on the fine grid.
The parallelization performs well as on uniform grids. For load balance one has to take

care for the different regions of refinement and the corresponding different time-steps.

5. TEST CALCULATIONS

Test calculations are performed for 2D benchmark problems of incompressible flows
defined in [21] and validated by many computations and partially by experiments. These
problems concern steady and unsteady flows around a circular cylinder placed nonsymmet-
rically in a long rectangular channel. Two typical problems are selected from this bench-
mark, a steady-state problem at Re= 20 and an unsteady problem at Re= 100, resulting in a
periodical vortex street. The present computations are performed on a coarse grid (221×
43 nodes) with a patch of refinementn around the body. The maximum velocityU at the
entrance in units of molecular speedc is equal to 0.1 (U/c∼ ε).

Results for the steady case at Re= 20 with refinement factorn = 4 (ωc = 5/3) are pre-
sented in Table I for some variations of the scheme. The table shows the coefficients for
drag and lift, the pressure difference between the front and end points of the cylinder,
and the recirculation length. The first row represents results with the present second-order
connection on the interfaces between two grids but with first-order boundary conditions
(bouncing-back) on the body surface. The second and third rows represent results with
boundary-fitting conditions on the body surface but with first-order connection on the in-
terfaces between the two grids either by using equilibrium distribution functions (second
row) or by exchanging distribution functions without rescaling (third row). The fourth row
represents results with the second-order accuracy in the whole computational domain that
means boundary-fitting conditions and rescaling of the distribution functions on the grid
interfaces according to Eq. (10) and Eq. (11). These results agree well in the span-width of
reference values [21] shown in the fifth and sixth rows. The pressure field obtained on the
coarse and fine grids and the streamlines around the cylinder are shown on Fig. 2 for this
case. The isobars cross without disturbances the interfaces between two grids.

Computations at Re= 100 with the refinement factor 6(ωc = 1.923) in the same geometry
and stationary inflow result in a periodical vortex street. The periodical solution was initiated
by computations of first-order accuracy to accelerate the onset of periodical flow. The patch
around the body is refined with a factor ofn = 6.

TABLE I

Steady Flow Around a Cylinder at Re = 20

CD CL 1p La

LBGK, 1st-order, 5.34 0.011 0.119 0.08
LBGK, 1st-order 5.28 0.014 0.111 0.08
LBGK, 1st-order 4.97 0.013 0.104 0.09
LBGK, 2nd-order 5.52 0.011 0.116 0.08
Band width of 5.57 0.010 0.117 0.08
Ref. values [21] 5.59 0.011 0.118 0.09

Note. Coefficients of dragCD and lift CL , pressure difference1p
between the front and end points of cylinder, recirculation lengthLa.
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FIG. 2. Steady flow around a cylinder at Re= 20. Presentation of coarse mesh, isobars, and streamlines.

Results of the developed periodical flow are shown in Figs. 3a to 3c for instantaneous
isolines ofx-velocity in Fig. 3a, for isolines ofy-velocity in Fig. 3b, and for isobars in
Fig. 3c. Solid lines in Fig. 4 represent drag and lift coefficients and the pressure difference
between the front and end points of the cylinder versus the number of coarse time-steps if
the second-order accurate boundary-fitting conditions are used. Dashed lines correspond to
the same values if the bouncing-back boundary conditions on the surface of the cylinder are
used. The dotted straight lines are the upper and lower limits of the amplitudes according

FIG. 3. Unsteady flow around a cylinder at Re= 100: a. instantaneous isolines ofx-velocity; b. instantaneous
isolines ofy-velocity; c. instantaneous isobars.
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FIG. 4. Unsteady flow around a cylinder at Re= 100. Coefficients of dragCD and lift CL and pressure
difference1p between the front and end points of cylinder versus the number of time-stepsδc

t : solid lines –
boundary-fitting conditions; dashed lines – bouncing-back conditions; straight dotted lines – bounds of reference
valuesCD max, CL max, 1p(t0 + T/2) [21].

to the reference values in [21]. They correspond to the maximum drag coefficient, the
maximum lift coefficient, and the pressure difference on the cylinder after half-periodT/2
from the time corresponding to the flow state with the maximum lift coefficient(t = t0). The
corresponding time is marked with the hollow circles on the curves1p(t/δc

t ) represented
in enlarged form in Fig. 5.

The computed Strouhal numbers of 0.297 for the case of bouncing-back and 0.298 for the
case of boundary-fitting conditions fit well in the bandwidth 0.295–0.305 of reference values
[21]. Like the steady state results, the results obtained with second-order boundary-fitting

FIG. 5. Unsteady flow around a cylinder at Re= 100. Drag coefficientCD and pressure difference1p between
the front and end points of cylinder versus the number of time-stepsδc

t : solid lines – boundary-fitting conditions;
dashed lines – bouncing-back conditions; straight dotted lines – bounds of reference valuesCD max, 1p(t0 + T/2)

[21]. (Enlarged upper part of Fig. 4.)
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conditions for unsteady problems agree well with the reference values [21]. Notice that the
results obtained with bouncing-back boundary conditions are also in good agreement with
the reference values [21]. It is connected with the fact that in calculations of lift and drag
coefficients hydrodynamical variables as pressure and velocity gradients on the surface of
cylinder were calculated by extrapolation of the corresponding values from the flow along
the external normal of the cylinder, and the influence of disturbances on the curvilinear
surfaces in viscous flow is “smoothed” some distance from it.

The CPU time per cycle on a PA-7200 workstation is 1140 s. It is comparable to the best
CPU times of conventional incompressible Navier–Stokes solvers published in [21]; only
some multigrid solvers perform faster.

5. CONCLUSIONS

Consequent formulation of the lattice–BGK method to second-order accuracy results
in a reliable, accurate, and efficient algorithm for the simulation of incompressible flows
at low to moderate Reynolds numbers around complex geometries. Local grid refinement
derived from detailed considerations of the model enables economical use of computer
capacities and increases the flexibility to deal with anisotropic flow features and thus to
deal with higher Reynolds numbers on Cartesian-like lattices. The combination with an
adaptive procedure offers a prospective way to an adaptive mesh refinement concept for
lattice–BGK methods.
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